COVID-19 precautions prompt big changes to hospital operations

At the end of May, the NIH Clinical Center began to phase-in several hundred employees back to work physically within the hospital since the coronavirus disease 2019 (COVID-19) pandemic swept across the nation mid-March. The hospital also began to slowly increase the patient census from roughly 50 to around 100 inpatients and outpatient clinic visits from roughly 50 a day to 150 a day.

“We are being asked to lead the reopening of the NIH campus and it’s a responsibility that I think we should be proud of but it’s a responsibility that means we have to be really cautious and careful how we do that,” said Dr. Jim Gilman, CEO of the Clinical Center, during a Town Hall May 6 (NIH Staff Only https://go.usa.gov/xvuyw).

“This is not a return to business as usual. There is nothing like our usual,” Gilman said. “Since March 11, Clinical Center efforts were limited to the most urgent patients. I think we are mature enough in our infection control measures and our understanding of what it takes to work in this pandemic to begin to increase our patient census.”

Anyone entering Building 10 – including patients, visitors, construction workers, researchers and staff – are screened at the North Lobby, Ambulance Entrance or P1 Parking Entrance Lobby by the U.S. Public Health Service Commissioned Corps Nursing Officers and are instructed to wear surgical masks. On May 20, the hospital hit a milestone of screening its 100,000th person entering Building 10.

“The safety of our patients and staff cannot be jeopardized,” Gilman added during the Town Hall. “We can never forget we’re doing this in the middle of a pandemic.”

Existing infection control measures also include restriction of visitors, staff working in segregated teams, social distancing (including in clinics and departmental waiting rooms), no large group meetings and keeping Building 10 cafeterias closed. The atrium coffee shop remains open with expanded offerings.

Current inpatients, and any who may be enrolling in a trial over the coming weeks, can only have visitors who agree to room-in, be tested for COVID, and stay with the patient. Outpatients who require visual or am-bulatory assistance will be allowed to have a family member or escort. When a patient is admitted to hospital, they will undergo syndromic screening upon admissions.

As the patient census increased, prospective surveillance testing of all NIH employees in the building with direct patient care began May 21. While voluntary, employees are strongly encouraged to schedule themselves to participate in the Clinical Center’s weekly surveillance testing.

While the initial phase-in of staff physically present in Building 10 began – the vast majority of NIH campus, all those who are telework-eligible employees, still remain offsite. On May 15, Julie Berko, the director of the NIH Office of Human Resources, presented a framework for NIH employees for return to physical workspaces (https://go.usa.gov/xvuudT). She announced that NIH is shifting to a maximum telework “until further notice” – an extension from the original timetable of “through May 31” announced by Dr. Francis Collins, Director of NIH, on April 24.

“The safety of our patients and staff cannot be jeopardized.”
— Dr. Jim Gilman, CEO Clinical Center

Staff and visitors are screened at Building 10 north entrance by the U.S. Public Health Service Commissioned Corps Nursing Officers. But for many, telework has been mandated “until further notice.”
NIH celebrates two local men for their 400th platelet donations to patients

They say lightning doesn’t strike the same place twice. However, at the NIH Donor Center at Fishers Lane it did! On March 6, NIH celebrated its second do-nor in a month making a 400th platelet donation.

Joe Fennel has been a steadfast platelet and granulocyte donor since the 1970s and has helped numerous Clinical Center patients through his donations. A retired D.C. fire fighter, Fennel rode his bike to the Bethesda campus all the way from Alexandria, VA, until the donation center got moved to Fishers Lane in 1997.

“I donate blood because it is a very rewarding thing to do. I derive satis-faction from it, and encourage others to do it. It’s a very simple act that benefits patients at the Clinical Center,” Fennel said.

Additionally, as part of his 400 plusapheresis donations, Fennel has made 37 granulocyte donations which are white blood cells that help fight infec-tions. Unlike platelet donations, which are viable for five days, granulocytes are only viable for 24 hours and are general-ly used for patients with life-threatening infections.

Cervenka is another member of the NIH Blood Bank’s most dedicated platelet and granulocyte donors. On March 2, Cervenka celebrated his 400th platelet donation with NIH Donor Center staff.

The volume of a bag of platelets is approximately 400 ml; a donor with 400 platelet donations has donated about 160 liters or 42 gallons by volume. However, the more accurate way to look at a platelet donation is the number of therapeutic doses each platelet donation provides to patients. The average unit of platelets can provide two therapeutic doses of platelets.

Fennel and Cervenka’s donations have contributed to the welfare of ap-proximately 1,600 patients.

“We like to express our gratitude to Joe, Bill and so many other donors that come and support our patients,” said Hal Wilkins, recruitment supervisor at the NIH Blood Bank.

Learn more at https://go.usa.gov/xmDwv or call (301) 496-4321.

- Submitted by the NIH Blood Bank

Resource for surgical services at the Clinical Center now available online

The NIH surgery webpages now avail-able for staff on the Clinical Center’s intranet are a “one-stop shop” with easy access to key material about surgical services at the hospital (https:// intranet.ccc.nih.gov/2019-surgery). The Clinical Center’s 12 main operating rooms, one of which is equipped with an intra-op MRI, are an important resource for the care of patients.

“This new website is an informa-tional hub for surgical services ses-sions, commonly used resources and general knowledge about our surgical services,” said the hospital’s Surgeon-in-Chief Dr. Jeremy Davis, a surgical oncologist with the National Cancer Institute.

These webpages provide contexts for surgical experts and consults avail-able at the NIH Clinical Center, intramural National Institute of Allergy and Infectious Diseases scientists, the Center for Disease Control and Prevention (CDC) and Harvard Medical School. Through this initiative he developed and tested a simple but clinically relevant classifier of antimicrobial resis-tance called “Difficult-to-Treat Resistance” or “DTT” that helps bedside clinicians quick-ly determine if they have a safe and effective antibiotic option for patients infected with resistant pathogens.

“I am humbled by the breadth of infec-tion that I witness each day as a critical care provider, which fuels my drive to search for ways to enhance survival and safety,” said Dr. Sameer S. Kadri, associate research phy-sician and head of the Clinical Epide-miology Section in the Clinical Center’s Critical Care Medicine Department, has leveraged big data generated from routine care at hun-dreds of hospitals to better understand and improve the management of the severely ill as well as inform healthcare policy.

Kadri founded and leads the NIH Anti-microbial Resistance Outcomes Research Initiative (NAMORI), a collaborative between the NIH Clinical Center, intramural National Institute of Allergy and Infectious Diseases scientists, the Centers for Disease Control and Prevention (CDC) and Harvard Medical School. Through this initiative he developed and tested a simple but clinically relevant classifier of antimicrobial resis-tance called “Difficult-to-Treat Resistance” or “DTT” that helps bedside clinicians quickly determine if they have a safe and effective antibiotic option for patients infected with resistant pathogens.

“I am humbled by the breadth of infection that I witness each day as a critical care provider, which fuels my drive to search for ways to enhance survival and safety,” said Dr. Sameer S. Kadri, associate research physician and head of the Clinical Epidemiology Section in the Clinical Center’s Critical Care Medicine Department, has leveraged big data generated from routine care at hundreds of hospitals to better understand and improve the management of the severely ill as well as inform healthcare policy.

Kadri is also currently working with the CDC to estimate the United States burden of Difficult-to-Treat Resistance and study the impact of antibiotic stewardship in culture negative sepsis. He is also working with the FDA to scrutinize the need for novel antibiotics.

Below, Kadri talks about his research and innovative use of data to better understand important clinical questions with scientific rigor that cannot be addressed by randomized clinical trials.

How can large databases substitute or provide answers that a conventional clinical trial cannot?

Thanks to mandated electronic health record use and technological advances in infor-matics and analytics, large granular health-care datasets today can offer a window into contemporary real-world healthcare practices and enable observational research in areas of critical care medicine where conventional clinical trials have not been feasible. They contain data from inpatient and outpatient care of large patient populations. They are an excel-lent resource to study rare conditions and rare treatments. However, they can be hard to access, for ethical and logistical reasons, and many are not standardized and model several terabytes of data to understand survival signals that may inform treatment strategies.

Kadri is also currently working with the CDC to estimate the United States burden of Difficult-to-Treat Resistance and study the impact of antibiotic stewardship in culture negative sepsis. He is also working with the FDA to scrutinize the need for novel antibiotics.

Below, Kadri talks about his research and innovative use of data to better understand important clinical questions with scientific rigor that cannot be addressed by randomized clinical trials.

How can large databases substitute or provide answers that a conventional clinical trial cannot?

Thanks to mandated electronic health record use and technological advances in informatics and analytics, large granular healthcare datasets today can offer a window into contemporary real-world healthcare practices and enable observational research in areas of critical care medicine where conventional clinical trials have not been feasible. They contain data from inpatient and outpatient care of large patient populations. They are an excellent resource to study rare conditions and rare treatments. However, they can be hard to access, for ethical and logistical reasons, and many are not standardized and model several terabytes of data to understand survival signals that may inform treatment strategies.

Kadri is also currently working with the CDC to estimate the United States burden of Difficult-to-Treat Resistance and study the impact of antibiotic stewardship in culture negative sepsis. He is also working with the FDA to scrutinize the need for novel antibiotics.

Below, Kadri talks about his research and innovative use of data to better understand important clinical questions with scientific rigor that cannot be addressed by randomized clinical trials.

How can large databases substitute or provide answers that a conventional clinical trial cannot?

Thanks to mandated electronic health record use and technological advances in informatics and analytics, large granular healthcare datasets today can offer a window into contemporary real-world healthcare practices and enable observational research in areas of critical care medicine where conventional clinical trials have not been feasible. They contain data from inpatient and outpatient care of large patient populations. They are an excellent resource to study rare conditions and rare treatments. However, they can be hard to access, for ethical and logistical reasons, and many are not standardized and model several terabytes of data to understand survival signals that may inform treatment strategies.

Kadri is also currently working with the CDC to estimate the United States burden of Difficult-to-Treat Resistance and study the impact of antibiotic stewardship in culture negative sepsis. He is also working with the FDA to scrutinize the need for novel antibiotics.

Below, Kadri talks about his research and innovative use of data to better understand important clinical questions with scientific rigor that cannot be addressed by randomized clinical trials.

How can large databases substitute or provide answers that a conventional clinical trial cannot?

Thanks to mandated electronic health record use and technological advances in informatics and analytics, large granular healthcare datasets today can offer a window into contemporary real-world healthcare practices and enable observational research in areas of critical care medicine where conventional clinical trials have not been feasible. They contain data from inpatient and outpatient care of large patient populations. They are an excellent resource to study rare conditions and rare treatments. However, they can be hard to access, for ethical and logistical reasons, and many are not standardized and model several terabytes of data to understand survival signals that may inform treatment strategies.

Kadri is also currently working with the CDC to estimate the United States burden of Difficult-to-Treat Resistance and study the impact of antibiotic stewardship in culture negative sepsis. He is also working with the FDA to scrutinize the need for novel antibiotics.

Below, Kadri talks about his research and innovative use of data to better understand important clinical questions with scientific rigor that cannot be addressed by randomized clinical trials.

How can large databases substitute or provide answers that a conventional clinical trial cannot?

Thanks to mandated electronic health record use and technological advances in informatics and analytics, large granular healthcare datasets today can offer a window into contemporary real-world healthcare practices and enable observational research in areas of critical care medicine where conventional clinical trials have not been feasible. They contain data from inpatient and outpatient care of large patient populations. They are an excellent resource to study rare conditions and rare treatments. However, they can be hard to access, for ethical and logistical reasons, and many are not standardized and model several terabytes of data to understand survival signals that may inform treatment strategies.

Kadri is also currently working with the CDC to estimate the United States burden of Difficult-to-Treat Resistance and study the impact of antibiotic stewardship in culture negative sepsis. He is also working with the FDA to scrutinize the need for novel antibiotics.

Below, Kadri talks about his research and innovative use of data to better understand important clinical questions with scientific rigor that cannot be addressed by randomized clinical trials.

How can large databases substitute or provide answers that a conventional clinical trial cannot?
Volunteers play a critical role at the NIH Clinical Center with approximately 185 volunteers performing over 9,800 hours of service in 2019 - the equivalent to almost five full time staff. Volunteers, who range in age from 16 to 83, perform a wide variety of tasks in the hospital, from clinical support, greeting patients and families with coffee, serving as patient ambassadors to assisting as language interpreters.

Retiree Janet Logan, who worked at Fogarty International Center and other institutes during her NIH career, beat the odds to become a volunteer at the Clinical Center. Surviving breast cancer - twice - was the impetus leading her to volunteer with cancer patients at the hospital.

Logan is grateful for the breast cancer treatment she received at the NIH in 1991 and 2001. “It was time for me to give back to NIH for the wonderful care I received here.”

Logan is recognized as the longest serving volunteer at the Clinical Center, and has volunteered for 24 years on the 12th floor outpatient clinic that treats patients with ovarian and other kinds of cancer.

She also enjoys traveling and is a cross-country skier who has traveled to many countries in Europe with the NIH Ski Club.

“My role is giving encouragement and hope to patients,” says Logan.

Two other volunteers, Dave and Sandy Gill, were looking for activities to give back to the community in their retirement. Having heard about the healing capabilities of dogs, they decided animal-assisted therapy would be their focus. The Gills had three dogs well suited to do this type of work and had them certified through National Capital Therapy Dogs. With their interest in health and science, and the fact that Sandy was a government contractor who worked with NIH for many years, the Clinical Center was the perfect place to volunteer. The Gills’ began visiting patients in 2014.

“I just knew that Toby, an active golden retriever, was put on this earth to be a therapy dog,” Sandy stated. The Gill’s other dogs, Cindy Bear, a black lab, and Rosko, another golden retriever, also visit the Clinical Center on Monday evenings, twice a month. Other therapy dog visits take place every other Tuesday in rotation with the Monday night visits.

Depending on the evening, the Gills and their dogs can be found visiting several units within the hospital or in a group setting in the 7th Floor Lounge. Toby is a favorite with the pediatric patients, while Cindy Bear loves bed visits where she can snuggle up with patients. Patients and their families have the opportunity to pet and play with the dogs as they recover from surgeries or undergo treatments. Some patients just want to pet a dog; others walk around the halls with the dogs, enabling them to get a bit of exercise; while others delight in seeing or getting the dogs to do tricks. The visits give patients a chance to socialize and proudly show off cell phone pictures of their pets.

“Patients miss their dogs and the feeling they receive from petting a therapy dog brings them comfort and smiles. The visits are a welcome change to the long days spent in the hospital and help to take away pain, discomfort and homesickness. Bringing this kind of joy to patients is gratifying and fulfilling,” Gill says.

“The CC volunteer corps has established a sense of dedication and enthusiasm that aligns with the mission of NIH. Our volunteers stand ready to help patients and their families so that their hospital experience is stress-free,” said Marcus Means, the Volunteer Coordinator for the Clinical Center’s Volunteer Program that is a part of the Office of Hospitality and Volunteer Services.

Interested in volunteering? Email ClinicalCenterVolunteerProgram@nih.gov.

- Mickey Hanlon and Deborah Accame