Principles of Clinical Pharmacology
Remote Sites 2009 - 2010

Cincinnati’s Children’s Hospital Medical Center
Duke University Medical Center, Durham
University of California, Los Angeles
Harbor-UCLA Medical Center, Los Angeles
Hoffman-La Roche, Inc., Nutley, NJ
Indiana University-Purdue University, Indianapolis
Howard University, Washington DC
Principles of Clinical Pharmacology
Remote Sites 2009-2010

Case Western Reserve University, Cleveland, OH
Johnson & Johnson, Titusville, NJ
Johnson & Johnson, San Diego, CA
Johnson & Johnson, Wayne, PA
University of Pennsylvania, Philadelphia, PA
Walter Reed Army Institute of Research and USUHS, Silver Spring, Maryland
Principles of Clinical Pharmacology
International Remote Sites 2009-2010

Dong-A Medical College
Busan, South Korea

Inha University Hospital
Incheon, South Korea

Instituto Nacional de Enfermedades Neoplasicas (INEN), Lima, Peru

Hospital Nacional Arzobispo Loayza,
Lima, Peru
COURSE MODULES

MODULE 1: Pharmacokinetics
MODULE 2: Drug metabolism and Transport
MODULE 3: Assessment of Drug Effects
MODULE 4: Optimizing and Evaluating Therapy
MODULE 5: Drug Discovery and Development
RECOMMENDED TEXT

PRINCIPLES of CLINICAL PHARMACOLOGY
SECOND EDITION

Arthur J. Atkinson, Jr., Darrell R. Abernethy,
Charles E. Daniels, Robert Bedrick
and Sanford P. Markey
The study of drugs and biologics and their actions in living organisms

Drugs: “small molecules”, chemicals

Biologics: “large molecules”, peptides, antibodies
CLINICAL PHARMACOLOGY

THE STUDY OF DRUGS IN HUMANS
CAREER GOALS OF CLINICAL PHARMACOLOGISTS

- Optimize understanding and use of existing medicines
- Discover, develop and evaluate new medicines
- Define the basis for variability in therapeutic and toxic responses to medicines
COURSE FOCUS

- Scientific basis of drug use, development and evaluation
- *Not* Therapeutics
- Emphasis is on *General Principles* for both “old” and “new” drugs
“Introduction” Lecture Outline

- Historical overview
- The problem of adverse drug reactions (ADRs)
- Drug discovery and development
- Variability in drug responses
- Introduction to pharmacokinetics
- The concept of clearance
Historical Overview

The establishment of *experimental pharmacology* as a discipline in Europe and the USA in the 19th and 20th centuries.
JOHN JACOB ABEL
1857 - 1938
OSWALD SCHMIEDEBERG
1838 - 1921
LACK OF IMPORTANCE ATTACHED TO DRUG THERAPY

“Fortunately a surgeon who uses the wrong side of the scalpel cuts his own fingers and not the patient; if the same applied to drugs they would have been investigated very carefully a long time ago.”

Placing emphasis on therapeutic technique and rational prescribing

Rudolph Buchheim
Beitrage zur Arzneimittellehre, 1849
FOUNDERS OF AMERICAN CLINICAL PHARMACOLOGY

HARRY GOLD WALTER MODELL
Partial List of GOLD and MODELL Accomplishments

1937 – Introduced Double-Blind Clinical Trial Design *

1939 – Initiated Cornell Conference on Therapy

1953 – Analized Digoxin Effect Kinetics to Estimate Absolute Bioavailability as well as Time-Course of Chronotropic Effects†

1960 - Founded Clinical Pharmacology and Therapeutics

Drug Toxicity
Adverse Drug Reactions

• We need to develop drugs that are both *effective* and *safe* for use in patients.

• While some toxicities can be managed and *may* be acceptable (*risk/benefit* ratio) others are by their nature and severity *unacceptable*.

• Covered in *Modules 2 and 4* in our course.
A SERIOUS ADVERSE DRUG REACTION is an adverse drug reaction (ADR) that requires or prolongs hospitalization, is permanently disabling or results in death.
THALIDOMIDE

[Chemical structure of Thalidomide]
Drug Exposure “in utero”

• The problem of
 “Drug Therapy in Pregnant and Nursing Women”
 Covered in *Module 4* in our course.
Thalidomide: Therapeutic Uses

- Erythema Nodosum Leprosum
- Multiple Myeloma

These are FDA-approved indications (immunomodulatory agent)

Marketing done under a special restricted distribution program:
System for Thalidomide Education and Prescribing Safety (S.T.E.P.S.)

Used with extreme caution in females of childbearing potential. Contraceptive measures are mandatory.
A recent example - Cytokine Storm (1)

“Six healthy young male volunteers at a contract research organization were enrolled in the first phase I clinical trial of TGN1412, a novel superagonist anti-CD28 monoclonal antibody that directly stimulates T cells.

A recent example - Cytokine Storm (2)

Within 90 minutes after receiving a single intravenous dose...all six volunteers had a systemic inflammatory response...rapid induction of proinflammatory cytokines...headache, myalgias, nausea, diarrhea, erythema, vasodilatation, and hypotension. _Within 12 to 16 hours they became critically ill..._

All six patients survived.”

N Engl J Med 2006;355:1018-1028
A recent example – Cytokine storm (3)

Preclinical models did not predict the risk of this reaction!

Problem of simultaneous dosing in 6 volunteers (first-in-human dosing)
BRIEF REPORT

Cytokine Storm in a Phase 1 Trial of the Anti-CD28 Monoclonal Antibody TGN1412

Ganesh Suntharalingam, F.R.C.A., Meghan R. Perry, M.R.C.P.,
Stephen Ward, F.R.C.A., Stephen J. Brett, M.D., Andrew Castello-Cortes, F.R.C.A.,
Michael D. Brunner, F.R.C.A., and Nicki Panoskaltsis, M.D., Ph.D.

CONSEQUENCES OF THALIDOMIDE CRISIS

- New FDA Regulations *(KEFAUVER-HARRIS 1962 AMENDMENTS)*
- Institute of Medicine-National Academy of Sciences *review of Therapeutic Claims*
- More Research on *Causes* of ADRs
- NIGMS created *Clinical Pharmacology Centers* in the USA
LINEAGE OF Modern Clinical Pharmacology

PATER FAMILIAS
RUDOLPH BUCHEIM

FOUNDING FATHERS
US
HARRY GOLD
WALTER MODELL
EUROPE
PAUL MARTINI

RENAISSANCE LEADERS
US
KEN MELMON
LEON GOLDBERG
JAN KOCH-WESER
JOHN OATES
DAN AZARNOFF
LOU LASAGNA
EUROPE
FOLKE SJÖQVIST
COLLIN DOLLERY
FACTORS CONTRIBUTING TO ADR’S

1. Inappropriate *polypharmacy* resulting in adverse *drug interactions*

2. *Lack of clear therapeutic goals*

3. *Failure to attribute* new symptoms or abnormal laboratory test results to *drugs prescribed*

4. *Low priority* given to studying ADR’s

5. *Insufficient knowledge* of pharmacology
ADVERSE DRUG REACTIONS

WHO:
Any untoward reaction to a drug

CONTEMPORARY VIEW:
Unpredictable Adverse Drug Events
ADVERSE DRUG EVENTS*

Medication Errors

- MEDICATION ERROR: preventable ADE plus near misses
- ADVERSE DRUG EVENT: preventable & unpredictable events with harm to the patient
- ADVERSE DRUG REACTION: generally unpredictable ADE

CHARACTERISTICS OF MOST ADRs*

- MOST NOT CAUSED BY NEW DRUGS
- MOST NOT IDIOSYNCRATIC REACTIONS
- ~80% ARE RELATED TO DRUG DOSE

“Target concentration” strategy

- Based on observed *individual variation in drug exposure (AUC)* when “standard” doses are prescribed.
- Attempts to “*individualize*” therapy when therapeutic and toxic ranges of drug concentrations in plasma have been established.
RATIONAL FOR PLASMA LEVEL MONITORING

PREScribed DOSE

ADHERENCE

ABSORPTION

PROTEIN BOUND ↔ PLASMA ↔ FREE

ELIMINATION

METABOLISM

RENAL EXCRETION

MOST TISSUES NONSPECIFIC BINDING

DISTRIBUTION

BIOPHASE RECEPTOR BINDING

EFFECT
NONCANCER DRUGS CAUSING ADR’S

<table>
<thead>
<tr>
<th>Drug</th>
<th>Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHENYTOIN**</td>
<td>CARBAMAZEPINE**</td>
</tr>
<tr>
<td>PREDNISONE</td>
<td>CODEINE</td>
</tr>
<tr>
<td>DIGOXIN**</td>
<td>LITHIUM**</td>
</tr>
<tr>
<td>AMIODARONE</td>
<td>THEOPHYLLINE**</td>
</tr>
<tr>
<td>ASPIRIN**</td>
<td>DESIPRAMINE**</td>
</tr>
<tr>
<td>CO-TRIMOXAZOLE</td>
<td>DEXAMETHASONE</td>
</tr>
<tr>
<td>PENTAMIDINE</td>
<td>GENTAMICIN**</td>
</tr>
</tbody>
</table>

** DRUGS FOR WHICH **PLASMA LEVELS ARE AVAILABLE**
INCIDENCE OF ADRs*

IN HOSPITALIZED PATIENTS
All severities 10.9 %
Serious 2.1 %
Fatal 0.2 %

AS CAUSE OF HOSPITAL ADMISSION
Serious 4.7 %
Fatal 0.13 %

ATTENTION FOCUSED ON MEDICAL ERRORS

“TO ERR IS HUMAN:
BUILDING A SAFER HEALTH SYSTEM”

Committee on Quality of Health Care in America
Institute of Medicine

Development and Evaluation of New Drugs

• Drug discovery
• Pre-clinical and clinical evaluation
• Subjects of *Module 5* in our course
NEW INDICATION:
ALLOPURINOL (Gout) - RW Rundles

ENDOGENOUS COMPOUND:
DOPAMINE (Shock) - LI Goldberg

DRUG METABOLITE:
FEXOFENADINE (Antihistamine) -
RL Woosley at al.
ALLOPURINOL*

MEDICINES “DISCOVERED” BY CLINICAL INVESTIGATORS

NEW INDICATION:
ALLOPURINOL (Gout) - *RW Rundles*

ENDOGENOUS COMPOUND:
DOPAMINE (Shock) - *LI Goldberg*

DRUG METABOLITE:
FEXOFENADINE (Antihistamine) -
RL Woosley et al.
DOPAMINE*

NEW INDICATION:
ALLOPURINOL (Gout) - *RW Rundles*

ENDOGENOUS COMPOUND:
DOPAMINE (Shock) - *LI Goldberg*

DRUG METABOLITE:
FEXOFENADINE (Antihistamine) - *RL Woosley et al.*
TORSADES DE POINTES
TERFENADINE METABOLISM*

TERFENADINE (SELDANE)

TERFENADINE CARBOXYLATE (ALLEGRA)
Drug Development Cost Per Approved Drug

<table>
<thead>
<tr>
<th></th>
<th>Out-of-Pocket ($ x 10^6)</th>
<th>Capitalized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Costs</td>
<td>403</td>
<td>802</td>
</tr>
<tr>
<td>Clinical Costs (% Total)</td>
<td>274 (68%)</td>
<td>453 (56%)</td>
</tr>
</tbody>
</table>

† Based on 21.5% success rate

PHASES OF PRE-MARKETING DRUG DEVELOPMENT

Pre-Clinical Development

IND

Chemical Synthesis and Formulation Development
Animal Models for Efficacy
Assay Development
Animal PK and PD
Animal Toxicology

Dose Escalation and Initial PK

Proof of Concept and Dose Finding

Large Efficacy Trials with PK Screen

PK and PD Studies in Special Populations

PHASE I

PHASE II

PHASE III

Clinical Development

NDA
Variability in Drug Response

- Pharmacokinetic (PK) basis
- Pharmacodynamic (PD) basis

Both PK and PD variability may be due to \textit{genetic} and/or \textit{environmental} factors
Interindividual Variation in Drug Exposure (AUC)

Karim A et al, 2007

Figure 3. Body weight- and dose-adjusted arithmetic mean (—) and individual values for pioglitazone (left panel) and metformin (right panel) AUC in females and males following single oral doses of commercial pioglitazone (15 mg) and metformin (500 mg or 850 mg) tablets given together to young healthy subjects.
Cytochrome P450 2D6

- Absent in 7% of Caucasians
- Hyperactive in up to 30% of East Africans
- Catalyzes primary metabolism of:
 - propafenone
 - codeine
 - β-blockers
 - tricyclic antidepressants
 - tamoxifene
- Inhibited by: quinidine, paroxetine, sertraline, venlafaxine
Nortriptyline Drug Exposure
Impact of CYP2D6 Polymorphism

CYP2D6 and Endoxifen Concentrations

Courtesy of Dr. David Flockhart
Genetics and Severe Drug Toxicity

HLA-B*5701
- Abacavir hypersensitivity
- Flucoxacillin liver injury (DILI)

HLA-B*1502
- Carbamazepine-induced
- Stevens-Johnson syndrome
Introduction to Pharmacokinetics

• This will be the subject of *Module 1* in our course.
• *Essential* for integration of material in subsequent course modules.
PHARMACOKINETICS

The QUANTITATIVE ANALYSIS of the TIME COURSE of DRUG ABSORPTION, DISTRIBUTION, METABOLISM, and EXCRETION
Because it is *quantitative*, pharmacokinetics is of necessity *mathematical*.
DRUG DOSE SELECTION

TRADITIONAL:

Look up “usual” dose in PDR
Memorize “usual” dose

IMPROVED:

Individualize dosing

Apply pharmacokinetics and the “*target concentration strategy*”
Introduction to Clearance

- **Clearance** is a “primary” parameter in the pharmacokinetic analysis of drug distribution and elimination.

- Understanding the concept of clearance is **essential** for drug evaluation and use in clinical medicine.
CREATININE CLEARANCE EQUATION

\[\text{CL}_{\text{Cr}} = \frac{U \times V}{P} \]

- **U** = URINE CONCENTRATION
- **V** = URINE VOLUME / TIME
- **P** = PLASMA CONCENTRATION
CREATININE CLEARANCE REVISITED

RATE OF APPEARANCE OF Cr IN URINE (dE/dt):
\[
dE/dt = CL_{Cr} \times P
\]

RATE OF CHANGE OF Cr IN BODY (dX/dt):
\[
dX/dt = I - CL_{Cr} \times P
\]

AT STEADY STATE:
\[
P = I / CL_{Cr}
\]

I = RATE OF CREATININE SYNTHESIS
STEADY STATE CONCENTRATION

CONTINUOUS CREATININE SYNTHESIS:

\[C_{SS} = \frac{I}{CL_{cr}} \]

CONTINUOUS DRUG INFUSION:

\[C_{SS} = \frac{I}{CL_{E}} \]
COCKCROFT & GAULT EQUATION

\[
CL_{\text{Cr}} = \frac{(140 - \text{age}) \text{ (weight in kg)}}{72 \text{ (serum Cr in mg/dL) }}
\]

[reduce estimate by 15% for women]

COCKCROFT & GAULT EQUATION

\[CL_{Cr} = \frac{I}{P} \]

\[CL_{Cr} = \frac{(140 - \text{age}) \times \text{weight in kg}}{72 \times \text{serum Cr in mg/dL}} \]

[reduce estimate by 15% for women]

Terms in red estimate creatinine synthesis rate.
Renal Function in Patients Toxic from Digoxin*

<table>
<thead>
<tr>
<th>Serum Cr (mg %)</th>
<th>Cl_Cr (mL/min)</th>
<th>≥ 50</th>
<th>< 50</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 1.7</td>
<td></td>
<td>4</td>
<td>19</td>
<td>52%</td>
</tr>
<tr>
<td>> 1.7</td>
<td></td>
<td>0</td>
<td>21</td>
<td>48%</td>
</tr>
</tbody>
</table>

ESTIMATED Cl_{Cr}

- **ESSENTIAL** for safe and effective use of renally eliminated drugs

- Important **PREREQUISITE** for application of pharmacokinetic principles

- Need to automate - **BUT:**
 - Laboratory system often does not “talk” with patient database
 - Patients often not weighed
PATHOPHYSIOLOGIC FACTORS NOT ACCOUNTED FOR IN DRUG DOSING

- Advanced Age: 42%
- Renal Impairment: 33%
- Patient Weight: 19%
- Other: 6%

* Lesar TS, Briceland L, Stein DS. JAMA 1997;277:312-7.