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Questions To Be Asked

> Pharmacokinetics
« What the body does to the drug
» Pharmacodynamics
« What the drug does to the body
> Disease progression
« Measurable therapeutic effect
> Variability
« Sources of error and biological variation

Pharmacokinetics /
Pharmacodynamics

» Pharmacokinetics » Pharmacodynamics

> “What the body does to  » “What the drug does to
the drug” the body”

> Fairly well known »> Largely unknown

> Useful to get to the PD  » Has clinical relevance
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Hierarchical Variability
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Pharmacokinetic Parameters

> Definition of pharmacokinetic parameters
« Descriptive or observational
« Quantitative (requiring a formula and a means

to estimate using the formula)

> Formulas for the pharmacokinetic
parameters

> Methods to estimate the parameters from
the formulas using measured data




Models For Estimation

Noncompartmental
Compartmental

Goals Of This Lecture

> Description of the parameters of interest

> Underlying assumptions of
noncompartmental and compartmental
models

» Parameter estimation methods
> What to expect from the analysis

Goals Of This Lecture

» What this lecture is about

« What are the assumptions, and how can
these affect the conclusions
« Make an intelligent choice of methods
depending upon what information is required
from the data
> What this lecture is not about

« To conclude that one method is “better” than
another




A Drug In The Body:
Constantly Undergoing Change

> Absorption

> Transport in the circulation

> Transport across membranes
> Biochemical transformation

> Elimination

—~ADME

- Absorption, Distribution,
Metabolism, Excretion

A Drug In The Body:

Constantly Undergoing Change
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Kinetics
And Pharmacokinetics

> Kinetics

« The temporal and spatial distribution of a
substance in a system.

» Pharmacokinetics

« The temporal and spatial distribution of a drug
(or drugs) in a system.




Definition Of Kinetics:
Consequences

> Spatial: Where in the system —7
« Spatial coordinates W
« Key variables: (x, y, z) o b Vi
> Temporal: When in the system ==
« Temporal coordinates
« Key variable: t

A Drug In The Body:
Constantly Undergoing Change
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Constantly Undergoing Change
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Spatially Distributed Models

> Spatially realistic models:

« Require a knowledge of physical
chemistry, irreversible thermodynamics
and circulatory dynamics.

« Are difficult to solve.

« Itis difficult to design an experiment to
estimate their parameter values.

> While desirable, normally not practical.
> Question: What can one do?

Resolving The Problem

> Reducing the system to a finite number of
components

> Lumping processes together based upon
time, location or a combination of the two

> Space is not taken directly into account:
rather, spatial heterogeneity is modeled
through changes that occur in time

Lumped Parameter Models

» Models which make the system discrete
through a lumping process thus
eliminating the need to deal with partial
differential equations.

> Classes of such models:

« Noncompartmental models
» Based on algebraic equations

o Compartmental models

» Based on linear or nonlinear differential
equations




Probing The System

> Accessible pools: These
are system spaces that are
available to the
experimentalist for test input
and/or measurement.

> Nonaccessible pools:
These are spaces comprising
the rest of the system which
are not available for test
input and/or measurement.

Focus On The Accessible Pool

SOURCE
INPUT MEASURE

ELIMINATION

Characteristics Of The
Accessible Pool

Kinetically Homogeneous
Instantaneously Well-mixed




Accessible Pool
Kinetically Homogeneous

(ref: see e.g. Cobelli et al.)

Accessible Pool
Instantaneously Well-Mixed
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» A = not mixed

> B = well mixed _
(ref: see e.g. Cobelli et al.)

Probing The Accessible Pool

SOURCE
INPUT MEASURE
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The Pharmacokinetic
Parameters

> Which pharmacokinetic parameters can
we estimate based on measurements in
the accessible pool?
> Estimation requires a model
« Conceptualization of how the system works
> Depending on assumptions:
« Noncompartmental approaches
« Compartmental approaches

Accessible Pool & System
Assumptions — Information

> Accessible pool
« Initial volume of distribution
« Clearance rate
« Elimination rate constant
« Mean residence time
» System
« Equivalent volume of distribution
« System mean residence time
« Bioavailability
« Absorption rate constant

Compartmental and
Noncompartmental
Analysis
The only difference between the two

methods is in how the nonaccessible
portion of the system is described
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The Noncompartmental Model

SOURCE

INPUT MEASURE

ELIMINATION

Recirculation-exchange
Assumptions

Recirculation/
Exchange

Recirculation-exchange
Assumptions

Recirculation/
Exchange

11



Single Accessible Pool
Noncompartmental Model

> Parameters (IV bolus and infusion)
« Mean residence time
« Clearance rate
« Volume of distribution
> Estimating the parameters from data
> Additional assumption:
« Constancy of kinetic distribution parameters

Mean Residence Time

> The average time that a molecule of drug
spends in the system
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Areas Under The Curve

> AUMC
« Area Under the Moment Curve

> AUC
« Area Under the Curve

> MRT
« “Normalized” AUMC (units = time)

12



What Is Needed For MRT?

» Estimates for AUC and AUMC.
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What Is Needed For MRT?

> Estimates for AUC and AUMC.

> They require extrapolations beyond the time
frame of the experiment

» Thus, this method is not model independent as
often claimed.

Estimating AUC And AUMC Using
Sums Of Exponentials
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Bolus IV Injection

Formulas can be extended to other administration modes

Estimating AUC And AUMC
Using Other Methods

> Trapezoidal

> Log-trapezoidal :
» Combinations gs
> Other 1

> Role of extrapolation '« & & & & =

The Integrals

> These other methods provide formulas for
the integrals between t, and t, leaving it up
to the researcher to extrapolate to time
zero and time infinity.
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Trapezoidal Rule
> Foreverytimet,i=1,...,n
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Log-trapezoidal Rule

> Foreverytimet,i=1,...,n

Trapezoidal Rule Potential Pitfalls

Drug
2
2
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» As the number of samples decreases, the

interpolation may not be accurate (depends on
the shape of the curve)

> Extrapolation from last measurement necessary
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Extrapolating From t, To Infinity

> Terminal decay is assumed to be a

monoexponential
> The corresponding exponent is often

called 2,.
> Half-life of terminal decay can be

calculated:
t12 = IN(2) A,

Extrapolating From t, To Infinity

From last data point:

From last calculated value:

Extrapolating From t,, To Infinity

> Extrapolating function crucial
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Estimating The Integrals

> To estimate the integrals, one sums up the
individual components.

Advantages Of Using Function
Extrapolation (Exponentials)
> Extrapolation is automatically done as part
of the data fitting

> Statistical information for all parameters
(e.g. their standard errors) calculated

> There is a natural connection with the
solution of linear, constant coefficient
compartmental models

» Software is available

Clearance Rate

> The volume of blood cleared per unit time,
relative to the drug

» It can be shown that
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Remember Our Assumptions

> If these are not verified
o the estimates will be
’ incorrect

> In addition, this approach
cannot straightforwardly
handle nonlinearities in
the data (time-varying
rates, saturation
processes, etc.)

The Compartmental Model

Single Accessible Pool

SOURCE
INPUT MEASURE

ELIMINATION
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Single Accessible Pool Models

> Noncompartmental » Compartmental

A Model Of The System

Inaccessible Portion

Accessibl% Portion

Compartmental Model

> Compartment
« Instantaneously well-mixed
« Kinetically homogeneous
» Compartmental model
« Finite number of compartments
« Specifically connected
« Specific input and output

19



Kinetics And The
Compartmental Model
> Time and space

» Time

Demystifying Differential
Equations

> It is all about modeling rates of change,
i.e. slopes, or derivatives:
120
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80
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20
0+ , ]
0 4 8 12
Time
> Rates of change may be constant or not

Concentration

Ingredients Of Model Building

> Model of the system
« Independent of experiment design
« Principal components of the biological system

> Experimental design

« Two parts:
* Input function (dose, shape, protocol)
» Measurement function (sampling, location)

20



Single Compartment Model

> The rate of change of
the amount in the

compartment, q4(t), is
equal to what enters the
Flasms compartment (inputs or
initial conditions), minus
k(0,1) what leaves the

compartment, a
quantity proportional to
g,(t)

> k(0,1) is a rate constant

Experiment Design
Modeling Input Sites

> The rate of change of
the amount in the
compartment, q4(t), is
equal to what enters
the compartment
(Dose), minus what
leaves the
compartment, a
quantity proportional
to q(t)

> Dose(t) can be any
function of time

Experiment Design

Modeling Measurement Sites

> The measurement (sample)
s1 does not subtract mass or
perturb the system

> The measurement equation
s1 links g4 with the
experiment, thus preserving
the units of differential
equations and data (e.g. q, is
mass, the measurement is
concentration
=>sl=q/V

> V = volume of distribution of
compartment 1

=1
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Notation

* The fluxes F om0 ) describe material
transport in units of mass per unit time

The Compartmental Fluxes (F;)

> Describe movement among, into or out of
a compartment
> A composite of metabolic activity
« transport
« biochemical transformation
« both

> Similar (compatible) time frame

A Proportional Model For The
Compartmental Fluxes
> q = compartmental masses
> p = (unknown) system parameters

> k; = a (nonlinear) function specific to the
transfer fromi to j

(ref: see Jacquez and Simon)
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The Fractional Coefficients (k;)

* The fractional coefficients k; are called
fractional transfer functions

* If k; does not depend on the
compartmental masses, then the kij is
called a fractional transfer (or rate)
constant.

Compartmental Models And
Systems Of Ordinary Differential
Equations

> Good mixing

« permits writing q;(t) for the it compartment.
> Kinetic homogeneity

« permits connecting compartments via the

kij.
The it" Compartment
Rate of Fractional
change of input from
qi 9

Input from
Fractional "OUtSId.e"
loss of (production
q rates)
|
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Linear, Constant Coefficient
Compartmental Models

> All transfer rates k; are constant.
« This facilitates the required computations

greatly

> Assume “steady state” conditions.

« Changes in compartmental mass do not affect
the values for the transfer rates

The it" Compartment

Rate of
change of
Q

Fractional
input from
Q

i

Fractional
loss of
Q

Input from
“outside”
(production
rates)

The Compartmental Matrix

24



Compartmental Model

> A detailed postulation of how one believes
a system functions.

> The need to perform the same experiment
on the model as one did in the laboratory.

Underlying System Model

x(4,3) ;‘ I

®(3,4)
k(zyl' ®1‘3,2) 9
k(0,1 40,3} K(5,3)
v L 4

k{(3,5)

k(0,5
v

SAAM Il software system, http://depts.washington.edu/saam2

System Model with Experiment

SAAM Il software system, httg://degts.washinqton.edu/saamz
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System Model with Experiment

SAAM Il software system, http://depts.washington.edu/saam2

Experiments

> Need to recreate the laboratory
experiment on the model.
> Need to specify input and measurements
> Key: UNITS
« Input usually in mass, or mass/time

« Measurement usually concentration
* Mass per unit volume

Model Of The System?

Reality Conceptualization Data Analysis
(Data) (Model) and Simulation

program optimize
begin model
end

[ ]

26



Pharmacokinetic Experiment
Collecting System Knowledge
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> The model starts as a qualitative construct,

based on known physiology and further
assumptions

Data Analysis
Distilling Parameters From Data
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Time (days)
* Qualitative model = quantitative differential

equations with parameters of physiological interest
* Parameter estimation (nonlinear regression)

Parameter Estimates

> Model parameters: k; and volumes

» Pharmacokinetic parameters:
volumes, clearance, residence
times, etc.

» Reparameterization - changing the
parameters from k; to the PK
parameters.
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Recovering The PK Parameters
From Compartmental Models

> Parameters can be based upon

« The model primary parameters
« Differential equation parameters
* Measurement parameters

« The compartmental matrix

» Aggregates of model parameters

Compartmental Model =
Exponential

For a pulse input 3(t)

Compartmental Residence Times

s1

ki2,1}
kil,2}
»?(kw,n
L ]

i

> Rate constants
> Residence times
> Intercompartmental clearances
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Parameters Based Upon The
Compartmental Matrix

Theta, the negative of the inverse of the compartmental
matrix, is called the mean residence time matrix.

Parameters Based Upon The

Compartmental Matrix
Generalization of Mean Residence Time

The average time the drug entering compartment j
for the first time spends in compartment i before
leaving the system.

The probability that a drug particle in
compartment j will eventually pass through
compartment i before leaving the system.

Compartmental Models:
Advantages

» Can handle nonlinearities

> Provide hypotheses about system
structure

> Can aid in experimental design, for
example to design dosing regimens

» Can support translational research
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Bias That Can Be Introduced By
Noncompartmental Analysis
> Not a single sink
= Clearance rate
| Mean residence time
| Volume of distribution
1 Fractional clearance
> Not a single sink / not a single source
| Clearance rate
| Mean residence time
| Volume of distribution
1 Fractional clearance

JJ DiStefano Ill.

Noncompartmental vs compartmental analysis: some bases for choice.
Am J. Physiol. 1982;243:R1-R6

Noncompartmental Versus
Compartmental Approaches To PK
Analysis: An Example

> Experiment design

« Bolus injection of 100 mg of a drug into
plasma
« Serial plasma samples taken for 60 hours
> Analysis using:
« Trapezoidal integration
« Sums of exponentials

« Linear compartmental model
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SAAM Il software system, httg://degts.washinqton.edu/saamz
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SAAM Il software system, http://depts.washington.edu/saam2

Results
Trapezoidal Sum of
Analysis Exponentials
Volume 10.2 (9%)
Clearance 1.02 1.02 (2%)
MRT 19.5 20.1 (2%)
A, 0.0504 0.0458 (3%)
AUC 97.8 97.9 (2%)
AUMC 1908 1964 (3%)

Compartmental
Model

10.2 (3%)
1.02 (1%)
20.1 (1%)
0.0458 (1%)
97.9 (1%)
1%)

(
(
(
(
(
1964 (1%

Take Home Message

> To estimate traditional pharmacokinetic
parameters, either model is probably adequate
when the sampling schedule is dense, provided
all assumptions required for noncompartmental

analysis are met

> Sparse sampling schedule and nonlinearities
may be an issue for noncompartmental analysis

> Noncompartmental models are not predictive
> Best strategy is probably a blend: but, careful

about assumptions!
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